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Abstract — Time series data is ubiquitous and is available in many fields including medicine, metrological studies, finance, oil and gas industries and 
other business domains. Mining of time series data has been the subject of research for decades. The clustering and classification together is needed 
for efficient and effective mining applications. In clustering, the first step is to obtain the number of classes and then cluster the whole data into those 
classes. The clustering algorithm is developed by utilizing model building techniques for proper identification of the data set to its associated cluster. The 
approaches to clustering time series can be classified as model based or model free. The model based approaches assume some form of underline 
generating process, estimating the model parameters and then perform clustering based on the sample information. In this paper, we develop an algo-
rithm for clustering bivariate time series using autoregessive model of order (p). The initial clusters are found using K-means algorithm and the model 
parameters are estimated using the EM algorithm. The clustering algorithm is developed by utilizing component maximum likelihood. The performance of 
the developed algorithm is evaluated using real time data collected from a materialogical station. A comparative study of the proposed algorithm is made 
with the existing data mining algorithm that uses univariate autoregressive process.  
 
Key words — Clustering, Time Series, EM Algorithm, AR Process. 

——————————      —————————— 
1. INTRODUCTION 

ost clustering algorithms adopt the assumption that 
the data available for grouping is static in nature. 
The evolutionary nature of time series is very impor-

tant property in clustering because time series observations 
are not static in nature. The clustering algorithms usually con-
sider the time series as the points in a n-dimensional space but 
the property of dynamic behavior of time series over time is 
neglected. Min Ji et.al., (2013) proposed a dynamic fuzzy clus-
tering  algorithm which works by determining those time se-
ries whose class labels are vague and further partition them 
into different clusters over time. Xu-Hong Lin et al., (2008) 
proposed a dynamic fuzzy clustering algorithm which  com-
bines auto regression model and conventional fuzzy clustering 
algorithm. 

Saeed Aghabozorgi et.al., (2015) exposed four main 
components of time series clustering and aimed to represent 
an updated investigation on the trend of improvements in 
efficiency, quality and complexity of clustering time series 
approaches during last decade. Luis E. Nieto-Barajas and Al-
berto Contreras-Cristan (2014)  proposed  a model-based clus-
tering method for time series. The model uses Bayesian semi 
parametric mixture model centered in a state-space model. 
The model allows for selecting different features of the series 
for clustering purposes. Shima Ghassempour et.al., (2014) de-
scribed an algorithm for clustering multivariate time series 
with variables taking both categorical and continuous values. 
The proposed approach is based on Hidden Markov Models 
(HMMs), where each trajectory is mapped in to an HMM, then   
defined a suitable distance between HMMs and finally proc- 
eed to cluster the HMMs with a method based on a distance 

matrix.   
Saeed Aghabozorgi and Teh Ying Wah (2014) em-

ployed a two-level fuzzy clustering strategy in order to 
achieve the objective of clustering. In the first level, upon di-
mensionality reduction by a symbolic representation, time 
series data are clustered in a high-level phase using the long-
est common subsequence as similarity measurement. Then, by 
utilizing an efficient method, prototypes are made based on 
constructed clusters and passed to the next level to be reused 
as initial centroids. Afterwards, a fuzzy clustering approach is 
utilized to justify the clusters precisely. 

Jose A. Vilar  and Juan M. Vilar (2013)  proposed a 
time series clustering method based on comparing forecast 
densities for a sequence of k > 1 consecutive horizons. The 
unknown k-dimensional forecast densities can be non-
parametrically approximated by using bootstrap procedures 
that mimic the generating processes without parametric re-
strictions. The authors evaluated the clustering procedure via 
simulation and are applied to a real dataset involving electrici-
ty prices series. Warren Liao,T., (2005) surveyed and summa-
rized previous works that investigated the clustering of time 
series data in various application domains. The past research 
are organized into three groups depending upon whether the 
clustering process work directly with the raw data either in 
the time or frequency domain, indirectly with features ex-
tracted from the raw data, or indirectly with models built from 
the raw data. 

Bandyopadhyay,S., et.al., (2010) used the Xie-Beni in-
dex and the C-means functional as objective functions to eva-
luate the cluster validity in a multi objective optimization 
framework. Elizabeth E. Holmes (2012) developed MARSS 
package for fitting multivariate autoregressive state-space 
models to time-series data. It is an R package for fitting linear 
multivariate autoregressive state-space (MARSS) models with 
Gaussian errors to time-series data. The MARSS package im-
plements state-space models in a maximum likelihood frame-
work. The core functionality of MARSS is based on likelihood 
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maximization using the Kalman filter/smoother, combined 
with an EM algorithm. 

Shusong Jin and Wai Keung Li (2006) considered a 
mixture autoregressive panel (MARP) model which can cap-
ture the multi-modal phenomenon in some data sets. EM algo-
rithm is used to estimate the MARP model. Christoph Pam-
minger and Sylvia Frauhwirth-Schnatter (2010) discussed 
model-based clustering of categorical time series based on 
time-homogeneous first-order Markov chains with unknown 
transition matrices. In the Markov chain clustering approach 
the individual transition probabilities are fixed to a group spe-
cific transition matrix. The approach Dirichlet multinomial 
clustering assumed that within each group unobserved hete-
rogeneity is still existent and is captured by allowing the indi-
vidual transition matrices to deviate from the group means by 
describing this variation for each row through a Dirichlet dis-
tribution with unknown hyper parameters. 

Pablo Montero (2014) described the use of R package 
TSclust  to integrate different time series dissimilarity criteria 
in a single software package in order to check and compare 
their behavior in clustering. Luciana Alvim S. Romani et.al. 
(2014), presented an unsupervised algorithm called CLimate 
and rEmote sensing Association patterns Miner, for mining 
association patterns on heterogeneous time series from climate 
and remote sensing data integrated in a remote sensing infor-
mation system developed to improve the monitoring of sugar 
cane fields. The proposed method can be used by agro mete-
orologists to mine and discover knowledge from their long 
time series of past and forecasting data, being a valuable tool 
to support their decision-making process. 

Emrah Bulut et.al. (2012), ended a fuzzy integrated 
logical forecasting method (FILF)  for multi-variate systems by 
using a vector autoregressive model.  The forecasting results 
of the VAR-FILF approach are compared with mostly used 
FTS methods and traditional time series analysis. Marcella 
Corduas and Domenico Piccolo (2008) discussed the statistical 
properties of the AR distance by deriving the asymptotic dis-
tribution and an adequate approximation which is easily com-
putable. Kavitha,V. and Punithavalli,M. (2010) presented  a 
survey on various clustering algorithms available for time se-
ries datasets. 
 Eamonn Keogh et.al., (2006) defined time series dis-
cords, a new primitive for time series data mining and intro-
duced an algorithm to efficiently find discords and also dem-
onstrated their utility on a host of domains.  Xiaozhe Wang 
et.al (2006) proposed a method for clustering of time series 
based on their structural characteristics. The proposed method 
does not cluster point values using a distance metric, rather it 
clusters based on global features extracted from the time se-
ries. The feature measures are obtained from each individual 
series are fed into arbitrary clustering algorithms, including an 
unsupervised neural network algorithm, self-organizing map, 
or hierarchal clustering algorithm. 

In atmospheric science the statistical problems are 
frequently characterized by large spatio-temporal data sets 
and pose difficult computational challenges in classification 
and pattern recognition. The present work analyzes the time 

series data of the regions with the feature vector consisting of 
Temperature and Humidity. For this, the whole data can be 
characterized by considering mixture of bivariate AR(p) 
process. But the number of components in this mixture is un-
known as a priori and it requires the regions are to be divided 
based on the data set of the bivariate feature vector. Hence in 
this paper, an unsupervised learning algorithm is developed 
and analyzed using bivariate AR(p) model and K-means algo-
rithm. K-means algorithm is used to identify the number of 

regions according to feature vector.  �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 �. The 

model parameters are estimated using the EM algorithm. The 
initial estimates of the parameters are obtained with K-means 
algorithm and least squares estimates. The unsupervised 
learning algorithm is developed by utilizing the conditional 
maximum likelihood of each class. The performance of the 
developed algorithm is studied through computing the per-
formance measures like sensitivity, specificity, precision, re-
call, F-measure and misclassification rate. A comparative 
study of the developed algorithm with existing univariate au-
toregressive process of order 𝑝𝑝 algorithm is also discussed.  

 
2. FINITE MIXTURE OF BIVARIATE AR(P)  
A bivariate process ��𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡

� , 𝑡𝑡 ∈ 𝑇𝑇�  is said to follow a bivariate 

autoregressive process of order 𝑝𝑝 if it can be expressed as 
𝑍𝑍𝑡𝑡 = 𝜇𝜇 + Φ(1)(𝑍𝑍𝑡𝑡−1 − 𝜇𝜇) + Φ(2)(𝑍𝑍𝑡𝑡−2 − 𝜇𝜇) +  … +Φ(𝑝𝑝)�𝑍𝑍𝑡𝑡−𝑝𝑝 − 𝜇𝜇� 
        +  𝜖𝜖𝑡𝑡       

where, 𝑍𝑍𝑡𝑡 = �𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡
� , 𝜇𝜇 = �

𝜇𝜇𝑋𝑋
𝜇𝜇𝑌𝑌� ,Φ(𝑗𝑗 ) = �

𝜙𝜙11
(𝑗𝑗 ) 𝜙𝜙12

(𝑗𝑗 )

𝜙𝜙21
(𝑗𝑗 ) 𝜙𝜙22

(𝑗𝑗 )� ; 

𝑗𝑗 = 1, 2, 3, … , 𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝜖𝜖𝑡𝑡 = �
𝑒𝑒𝑋𝑋𝑡𝑡
𝑒𝑒𝑌𝑌𝑡𝑡
� and 𝜖𝜖𝑡𝑡  of 𝑍𝑍𝑡𝑡  , t = 1, 2, 3, . . . , N 

follows a bivariate Gaussian distribution with mean vector as 
null vector and variance – Covariance matrix as 

∑   =   � 
    𝜎𝜎𝑒𝑒𝑋𝑋𝑡𝑡

2 𝜌𝜌𝜎𝜎𝑒𝑒𝑋𝑋𝑡𝑡 𝜎𝜎𝑒𝑒𝑌𝑌𝑡𝑡
𝜌𝜌𝜎𝜎𝑒𝑒𝑋𝑋𝑡𝑡 𝜎𝜎𝑒𝑒𝑌𝑌𝑡𝑡      𝜎𝜎𝑒𝑒𝑌𝑌𝑡𝑡

2 �         

The probability density function of ∈t  is  

f�ext , eyt� = �
1

2π σeX t
 σeY t

�1 − ρ2
� 

                      exp �−  1
2(1−ρ2)

 �
eX t

2

σeX t
2   −   

2ρeX t eY t
σeX t

σeY t
+

eY t
2

σeY t
2�� ,    

                         −1 <   𝜌𝜌  <  1, 𝜎𝜎𝑒𝑒𝑋𝑋  >  0  𝑎𝑎𝑎𝑎𝑎𝑎  𝜎𝜎𝑒𝑒𝑌𝑌  >  0          (2.1) 
This process reduces to univariate AR(p) process if   
ϕ12

(j),ϕ21
(j)  and  ϕ22

(j)  for j =  1 ,2, 3, . . . , p  are 0. This process also 
includes bivariate AR(1) process when p =  1.  
The conditional likelihood function of the time series can be 
expressed as 

𝑃𝑃(𝑍𝑍𝑡𝑡 ,Φ) = Π
𝑢𝑢=𝑝𝑝+1

𝑛𝑛
𝑓𝑓 ��𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑢𝑢 , 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑢𝑢 �,Φ�                  (2.2) 

Since the residual terms in sample realization of time series 
starts from  u  =  p + 1 in bivariate AR(p) process , i.e.  

𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑢𝑢 = 𝑋𝑋𝑡𝑡 ,𝑢𝑢 − 𝜙𝜙11
(1)𝑋𝑋𝑡𝑡 ,𝑢𝑢  −𝑝𝑝 − 𝜙𝜙12

(1)𝑌𝑌𝑡𝑡 ,𝑢𝑢  −𝑝𝑝 −  𝜙𝜙11
(2)𝑋𝑋𝑡𝑡 ,𝑢𝑢  −(𝑝𝑝−1) 
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             −𝜙𝜙12
(2)𝑌𝑌𝑡𝑡 ,𝑢𝑢  −(𝑝𝑝−1) −     .    .    .    − 𝜙𝜙11

(𝑝𝑝)𝑋𝑋𝑡𝑡 ,𝑢𝑢  −1 − 𝜙𝜙12
(𝑝𝑝)𝑌𝑌𝑡𝑡 ,𝑢𝑢  −1 

 

         = 𝑋𝑋𝑡𝑡 ,𝑢𝑢 − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙11

(𝑗𝑗 )𝑋𝑋𝑡𝑡 ,𝑢𝑢  –(𝑝𝑝−𝑗𝑗+1) − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙12

(𝑗𝑗 )𝑌𝑌𝑡𝑡 ,𝑢𝑢  –(𝑝𝑝−𝑗𝑗+1),  

 
                                                                                 𝑢𝑢 = 𝑝𝑝 + 1, 𝑝𝑝 + 2, . . . ,𝑛𝑛 
and 

𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑢𝑢 = 𝑌𝑌𝑡𝑡 ,𝑢𝑢 − 𝜙𝜙21
(1)𝑋𝑋𝑡𝑡 ,𝑢𝑢  −𝑝𝑝 − 𝜙𝜙22

(1)𝑌𝑌𝑡𝑡 ,𝑢𝑢  −𝑝𝑝 −  𝜙𝜙21
(2)𝑋𝑋𝑡𝑡 ,𝑢𝑢  −(𝑝𝑝−1) 

 
            −𝜙𝜙22

(2)𝑌𝑌𝑡𝑡 ,𝑢𝑢  −(𝑝𝑝−1) −     .   .   .    − 𝜙𝜙21
(𝑝𝑝)𝑋𝑋𝑡𝑡 ,𝑢𝑢  −1 − 𝜙𝜙22

(𝑝𝑝)𝑌𝑌𝑡𝑡 ,𝑢𝑢  −1 
 

       = 𝑌𝑌𝑡𝑡 ,𝑢𝑢 −  ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙21

(𝑗𝑗 )𝑋𝑋𝑡𝑡,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) −  ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙22

(𝑗𝑗 )𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)
 

 
                                                                        𝑢𝑢 = 𝑝𝑝 + 1, 𝑝𝑝 + 2, . . . ,𝑛𝑛 

 
where, Φ =  �σeX

2 , σeY
2 ,ρ,ϕ11

(j),ϕ12
(j),ϕ21

(j),ϕ22
(j), j =  1 ,2, . . . , p� are 

the set of model parameters and  n  is the number of observa-
tions in a given time series realization D.  
Substituting the value of  f�eXt , eYt� given in equation (2.1) in 
(2.2) one can obtain likelihood function of the time series as 

𝑃𝑃(𝑍𝑍𝑡𝑡  ,Φ) = � 1
2𝜋𝜋𝜎𝜎𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑢𝑢

 𝜎𝜎𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑢𝑢
�1−𝜌𝜌2�

𝑛𝑛−𝑝𝑝

                     

                  𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2(1−𝑝𝑝2)

∑
𝑢𝑢= 𝑝𝑝+1

𝑛𝑛
�
𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑢𝑢

2

𝜎𝜎𝑒𝑒𝑋𝑋
2   −   

2𝜌𝜌𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑢𝑢 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑢𝑢
𝜎𝜎𝑒𝑒𝑋𝑋 𝜎𝜎𝑒𝑒𝑌𝑌

+
𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑢𝑢

2

𝜎𝜎𝑒𝑒𝑌𝑌
2 ��   (2.3) 

 
The logarithm of the likelihood function is 
𝑃𝑃(𝑍𝑍𝑡𝑡  ,Φ) =  − (𝑛𝑛 − 𝑝𝑝)  ln�2𝜋𝜋 𝜎𝜎𝑒𝑒𝑋𝑋  𝜎𝜎𝑒𝑒𝑌𝑌�1 − 𝜌𝜌2�   
 

             −   
1

2(1 − 𝜌𝜌2) ∑
𝑢𝑢= 𝑝𝑝+1

𝑛𝑛
 �
𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑢𝑢

2

𝜎𝜎𝑒𝑒𝑋𝑋2
  −

2𝜌𝜌𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑢𝑢 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑋𝑋 𝜎𝜎𝑒𝑒𝑌𝑌
+
𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑢𝑢

2

𝜎𝜎𝑒𝑒𝑌𝑌2
� 

 
                                                             (2.4) 

Now, let the whole time series data are generated by 
M different bivariate autoregressive process of order p which 
corresponds to M  class labels of interest with 
weightsP(ω1), P(ω2), . . . , P(ωM ). 

Let P(Zt|ωk ,Φk
�)denote the conditional likelihood 

function of kth class with Φk  as the set of parameters for the 
model. Then the conditional likelihood function of the mixture 
of finite bivariate AR process of order p can be expressed in 
the form of  

𝑃𝑃(𝑍𝑍𝑡𝑡 | Θ�) = ∑
𝑘𝑘=1

𝑀𝑀
  𝑃𝑃( �𝑍𝑍𝑡𝑡 |𝜔𝜔𝑘𝑘 ,Φ𝑘𝑘)𝑃𝑃(𝜔𝜔𝑘𝑘)                    (2.5)   

where, Θ = {Φ1,Φ2, . . . ,ΦM , P(ω1), P(ω2), . . . , P(ωM )} represents 
the set of model parameters for the mixture model  and 
P( �Zt|ωk ,Φk) is  as given in equation (2.3). 
A bivariate time series Zt  is assigned to cluster ωk  with post-
erior probability 

P(ωk|Z�t) such that   ∑
k=1

M
P(ωk) = 1.    

This model includes the mixture of univariate autore-
gressive process of order p when the model parameters  
ϕ21

(j),ϕ12
(j) and  ϕ22

(j) ;  j =  1 ,2, 3, . . . , p are zero for k =
 1,2, . . . , M. If  M =  1,  then this process becomes bivariate 
AR(p) process. 

 
3. K- MEANS ALGORITHM 

The K- means algorithm is a faster method to perform 
clustering of time series data. In K-means algorithm, conti-
nuous reassignments of objects into different clusters are done 
so that the distance within cluster is minimized. Let the time 
series are generated by M different bivariate AR(p) models 
which corresponds to M clusters of  interest with weights 
P(ω1), P(ω2), . . . , P(ωM ). Let P( �Zt|ωk ,Φk)denote the conditional 
likelihood function of  kth  cluster with the set of parameters 
as  Φk  for the model. Then the conditional likelihood function 
of mixture of finite bivariate AR process of order p can be ex-
pressed in the form 

𝑃𝑃(𝑍𝑍𝑡𝑡 | Θ�) = ∑
𝑘𝑘=1

𝑀𝑀
  𝑃𝑃( �𝑍𝑍𝑡𝑡 |𝜔𝜔𝑘𝑘 ,Φ𝑘𝑘)𝑃𝑃(𝜔𝜔𝑘𝑘)                  (3.1) 

where,   Θ = {Φ1,Φ2, . . . ,ΦM , P(ω1), (ω2), . . . P(ωM )} represents 
the set of model parameters for  mixture model. 

A bivariate time series Zt  is assigned to cluster ωk  
with posterior probability P(ωk|Zt

�) such that∑ P(ωk)M
k=1 = 1. 

This model includes mixture of univariate autoregressive 
process of order p model when the model parameters  
ϕ 12

(j) ,ϕ 21
(j)   and  ϕ 22

(j)  are zero for k =  1,2, . . . , M. If M =  1, this 
process becomes Bivariate AR(p) process. The feature vector 
representing  Φ =  �ϕ11

(j), ϕ12
(j),ϕ21

(j),ϕ22
(j)�; j = 1,2, . , . . , p for each 

bivariate time series is obtained through using least square 
method of estimation (Douglas C. Montgomery et.al., 1990). 

For utilizing the K-means algorithm, each time series 
is reduced to the object vector Φt  = ��ϕ11t

(j) , ϕ12t
(j) ,ϕ21t

(j) ,ϕ22t
(j) �; j =

1,2, . , . ., p of the parameters of bivariate AR(p) which are ob-
tained using ordinary least square estimates of the model. If Ck  
is the center of the kth cluster then K-means algorithm attempts 

to minimize the objective function F =  ∑
t =1

N
  ∑
k =1

M
 (Φt k − Ck)2.The 

K-means algorithm also requires initial number of clusters, 
which can be obtained by plotting a bivariate scatter surface 
for all time series of training data. Based on the number of 
surfaces visualized, the initial value of M is obtained.   
The K-means algorithm for obtaining the number of clusters is 
as follows: 
Step 1:   Identify the value of K. 
Step 2:   Initialize K cluster centers. 
Step 3:   Decide the class memberships of 𝑁𝑁objects by  
              assigning them to nearest Cluster center. 
Step 4:   Re estimate the K cluster center by assuming the  
              membership found above as correct. 
Step 5:    If none of the N objects changed membership in last  
              iteration, then exit otherwise go to step 3. 

For grouping the training time series data into M clus-
ters the residual variances of each class, correlation coefficient 
between the attributes in each class and model parameters 
ϕ11

(j),ϕ12
(j),ϕ21

(j),ϕ22
(j); j = 1,2, . , . . , p within each class are obtained 

using clustered time series of that class and taking average 
over the number of time series in that class. 
 
4. ESTIMATION OF PARAMETERS USING EM     
    ALGORITHM 
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This section presents the estimation of parameters us-
ing Expectation - Maximization algorithm. Here, without loss 
of generality, it is assumed that the time series values are 
standardized by taking each individual observation from their 
mean value and hence the mean function of each time series is 
considered as zero. Therefore the problem of estimation is to 
obtain the estimates of the parameters σeX

2 ,σeY
2 , ρ,ϕ11

(j),ϕ12
(j),ϕ21

(j) 
and  ϕ22

(j) ;   j =  1 ,2, 3, . . . , p. For estimating the parameters 
through EM algorithm, one can use likelihood function of the 
sample. 
 Let D  =   {Z1, Z2, . . . , ZN } are N time series and assum-
ing that these are conditionally independent under the given 
model, the likelihood function of realization is 

P (D|Θ)     =  ∏
t=1

N
P(Zt|Θ) 

       =  ∏
t=1

N
∑

k=1

M
P(Zt|ωk  ,Φk)P(ωk)    

The log likelihood function of the realization  D  is 

ln P(D|Θ) = ∑
t = 1

N
ln � ∑

k = 1

M
P(Zt|ωk  ,Φk) P(ωk)�          

 
In the first step of EM algorithm the expectation of log likelih-
ood function is obtained. Given the observed data set D and 
current parameter estimateΘ(r), the expected value of log like-
lihood for M labels of time series each having n points of ob-
servations can be expressed as  
    Q(Θ|Θ(r) �) = E�ln P(D|Θ)� 

                         = ∑
t=1

N
  ∑

k=1

M
 P(ωk|Zt,Θ(r) �) ln P(Zt|ωk ,Φk

�) 

                              + ∑
t=1

N
  ∑

k=1

M
 P(ωk|Zt,Θ(r) �) ln P(ωk)             (4.1) 

where, the posterior probabilities P(ωk|Zt,Θ�) are computed 
using the Bayes rule as 
 

P(ωk|Zt,Θ�) = P(Zt |ωk ,Φk �)P(ωk )

∑
q =1

M
P�Zt �ωq ,Φq ��P�ωq �

 ,   

                                              t = 1, 2, . . . , N and  k 1, 2, . . . , M.          (4.2) 

This implies,   Q(Θ|Θ(r) �)  =   ∑
t=1

N
 ∑
k=1

M
 P�ωk|Zt

�,Θ(r)� 

  �− (n − p) ln �2π σeX k
σeY k

�1 − ρk
2� �   

 

�−   
1

2(1 − ρk
2) ∑

u = p+1

n
�

eXt,u
2

σeX k
2   −   

2ρkeXt,u eYt,u

σeX k
σeY k

+
eYt,u

2

σeY k
2 �� 

+   ∑
t=1

N
   ∑

k=1

M
  P�ωk|Zt

�,Θ(r)�   ln  

⎩
⎪
⎨

⎪
⎧

P(Zt|ωk ,Φk
�)P(ωk)

∑
q=1

M
P�Zt�ωq ,Φq

��P�ωq�
⎭
⎪
⎬

⎪
⎫

 

            (4.3) 
In the M- step of EM algorithm, one has to find estimates of 
parameters by maximizing Q(Θ|Θ(r) �).  
 

The updated equation P(ω�k)of the model is  

P(ω�k) = 1
N

 ∑
t =1

N
  P��ωk|Zt,Θ(r)�     k = 1, 2, . . . , M 

                  (4.4) 
For  estimating   σeX k

2 ,σeY k
2 ,ϕ11k

(j) ,ϕ12k
(j) ,ϕ21k

(j) ,ϕ22k
(j) ; j =  1,2, . . . , p 

and ρk  the updated equations respectively are  

∑
𝑡𝑡=1

𝑁𝑁
  𝑃𝑃��𝜔𝜔𝑘𝑘 | 𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� �(𝑛𝑛 − 𝑝𝑝) � 

 

−  
1

(1 − 𝜌𝜌𝑘𝑘2)  ∑
𝑢𝑢= 𝑝𝑝+1

𝑛𝑛

⎝

⎜
⎛
�𝑋𝑋𝑡𝑡 ,𝑢𝑢 − ∑

𝑗𝑗= 1

𝑝𝑝
𝜙𝜙11𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙12𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)�
2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2

� 

−  
𝜌𝜌𝑘𝑘

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢 − ∑

𝑗𝑗= 1

𝑝𝑝
𝜙𝜙11𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙12𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� 

 

�� �𝑌𝑌𝑡𝑡 ,𝑢𝑢 − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙21𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) −  ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙22𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)��

⎦
⎥
⎥
⎤

= 0 

                 (4.5) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� �(𝑛𝑛 − 𝑝𝑝) � 

 

−  
1

(1 − 𝜌𝜌𝑘𝑘2) ∑
𝑢𝑢= 𝑝𝑝+1 

𝑛𝑛

⎝

⎜
⎛
�𝑌𝑌𝑡𝑡 ,𝑢𝑢 − ∑

𝑗𝑗= 1

𝑝𝑝
𝜙𝜙21𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙22𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)�
2

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
2

� 

−   
𝜌𝜌𝑘𝑘

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢 − ∑

𝑗𝑗= 1

𝑝𝑝
𝜙𝜙11𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙12𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� 

 

�� �𝑌𝑌𝑡𝑡 ,𝑢𝑢 − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙21𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) −  ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙22𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)��

⎦
⎥
⎥
⎤

= 0 

 
                                (4.6) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)�  

 

∑
𝑢𝑢=𝑝𝑝+1

𝑛𝑛
�

1
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘

𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)𝑋𝑋𝑡𝑡 ,𝑢𝑢  −   
𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)𝑌𝑌𝑡𝑡 ,𝑢𝑢
� 

 

−� ∑
𝑗𝑗=1

𝑝𝑝
�
𝜙𝜙11𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘
(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) 

 

− � ∑
𝑗𝑗=1

𝑝𝑝
�𝜙𝜙12𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
− 𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� �𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� =                    (4.7) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=𝑝𝑝+1

𝑛𝑛
�

1
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘

𝑋𝑋𝑡𝑡 ,𝑢𝑢𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) −
𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)𝑌𝑌𝑡𝑡 ,𝑢𝑢
� 
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         −��
𝑗𝑗= 1

𝑝𝑝

�
𝜙𝜙11𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘
(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)�  𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) 

 

�− � ∑
𝑗𝑗= 1

𝑝𝑝
�
𝜙𝜙12𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘
(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)�  =  0 

 
                  (4.8) 

∑
𝑡𝑡=1

𝑁𝑁
  𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)�  

∑
𝑢𝑢=𝑝𝑝+1

𝑛𝑛
�
𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘

𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)𝑋𝑋𝑡𝑡 ,𝑢𝑢 −   
1
𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) 𝑌𝑌𝑡𝑡 ,𝑢𝑢
� 

 

−� ∑
𝑗𝑗= 1

𝑝𝑝
�
𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜙𝜙21𝑘𝑘
(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) 

 

− �� ∑
𝑗𝑗= 1

𝑝𝑝
�
𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜙𝜙22𝑘𝑘
(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� = 0 

 
                  (4.9) 

∑
𝑡𝑡=1

𝑁𝑁
  𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=𝑝𝑝+1

𝑛𝑛
 �
𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘

 𝑋𝑋𝑡𝑡 ,𝑢𝑢𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) � 

 

−   
1
𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) 𝑌𝑌𝑡𝑡 ,𝑢𝑢  

 

−� ∑
𝑗𝑗=1

𝑝𝑝
�
𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜙𝜙21𝑘𝑘
(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) 

 
 

�− � ∑
𝑗𝑗=1

𝑝𝑝
�
𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒X𝑘𝑘

  −   
𝜙𝜙22𝑘𝑘

(𝑗𝑗 )

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)� = 0 

             (4.10) 
 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� �(𝑛𝑛 − 𝑝𝑝)𝜌𝜌𝑘𝑘 − �  

 

𝜌𝜌𝑘𝑘
(1 − 𝜌𝜌𝑘𝑘2) ∑

𝑢𝑢= 𝑝𝑝+1 

𝑛𝑛

⎝

⎜
⎛
�𝑋𝑋𝑡𝑡 ,𝑢𝑢 − ∑

𝑗𝑗= 1

𝑝𝑝
𝜙𝜙11𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙12𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)�
2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2

� 

�� �𝑌𝑌𝑡𝑡 ,𝑢𝑢 − ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙21𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) −  ∑
𝑗𝑗= 1

𝑝𝑝
𝜙𝜙22𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)�
2

⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤
 

 

+�
1 + 𝜌𝜌𝑘𝑘2

1 − 𝜌𝜌𝑘𝑘2
� ∑ 
𝑢𝑢=𝑝𝑝+1

𝑛𝑛
�𝑋𝑋𝑡𝑡 ,𝑢𝑢 − ∑

𝑗𝑗=1

𝑝𝑝
𝜙𝜙11𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) − ∑
𝑗𝑗=1

𝑝𝑝
𝜙𝜙12𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)�

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
 

 

�
�𝑌𝑌𝑡𝑡 ,𝑢𝑢 − ∑

𝑗𝑗=1

𝑝𝑝
𝜙𝜙21𝑘𝑘

(𝑗𝑗 ) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1) − ∑
𝑗𝑗=1

𝑝𝑝
𝜙𝜙22𝑘𝑘

(𝑗𝑗 ) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−(𝑝𝑝−𝑗𝑗+1)�

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
⎭
⎪
⎬

⎪
⎫

= 0 

             (4.11) 
Solving the equations (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), (4.10) 
and (4.11) simultaneously and iteratively the refined estimates 
of model parameters 
P(ωk),σeX k

2 ,σeY k
2 ,ϕ11k

(j) ,ϕ12k
(j) ,ϕ21k

(j)  and ϕ22k
(j) , j =  1 ,2, 3, . . . , p and 

ρk  can be obtained. 
 
Expectation Maximization Algorithm 
 
Step 1:  Find the initial parameters using equations (5.1) to     
              (5.3) given in section 5. 
Step 2:  Obtain revised estimates of the parameters         
              P(ωk),σeX k

2 ,σeY k
2 ,ϕ11k

(j) ,ϕ12k
(j) ,ϕ21k

(j) ,ϕ22k
(j)  ; 

               j =  1 ,2, 3, .  .  .  , p  and  ρk  using equations (4.4),  (4.5),     
               (4.6),  (4.7), (4.8), (4.9), (4.10) and (4.11). 
Step 3:  Repeat the process until the parameters do not change  
              or the difference in successive computations is within    
              given threshold value. 
Step 4:  Write final estimates of parameters    
               P(ωk),σeX k

2 ,σeY k
2 ,ϕ11k

(j) ,ϕ12k
(j) ,ϕ21k

(j) ,ϕ22k
(j) ; 

               j =  1 ,2, 3, .  .  , p and ρk .  
 
5. INITIALISATION OF PARAMETERS  

To initialize the parameters σeX k
2 ,σeY k

2    and   ρk using 
K-means algorithm one can obtain the number of clusters of 
the training data set. After classifying the time series data into 
M clusters, the residual variance of each attribute for each 
class, the correlation coefficient between the attributes in each 
class and the model parameters with in the class are obtained 
using the clustered time series of that class.   
Thus the initial estimates of σeX k

2  and  σeY k
2 can be taken as 

𝜎𝜎�𝑒𝑒𝑋𝑋𝑘𝑘
2 =   1

(𝑛𝑛−𝑝𝑝) 𝐺𝐺𝑘𝑘
∑

𝑔𝑔 = 1

𝐺𝐺𝑘𝑘
 ∑
𝑢𝑢  = 2

𝑛𝑛
 𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑢𝑢

2(𝑔𝑔)              

and  𝜎𝜎�𝑒𝑒𝑌𝑌𝑘𝑘
2 =   

1
(𝑛𝑛 − 𝑝𝑝) 𝐺𝐺𝑘𝑘

∑
𝑔𝑔 = 1

𝐺𝐺𝑘𝑘
 ∑
𝑢𝑢  = 2

𝑛𝑛
 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑢𝑢

2(𝑔𝑔),   for 𝑘𝑘 =  1,2, . . . ,𝑀𝑀 

            (5.1) 

where, Gk   is the number of time series in the  kth  cluster. 
The initial estimate of  ρk ,  the correlation coefficient between 
Xt  and  Yt   is given by 

𝜌𝜌�𝑘𝑘 =  1
𝐺𝐺𝑘𝑘

∑
𝑔𝑔 = 1

𝐺𝐺𝑘𝑘 𝐶𝐶𝐶𝐶𝑣𝑣(𝑔𝑔)�𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡�
�𝑉𝑉𝑉𝑉𝑟𝑟(𝑔𝑔)�𝑋𝑋𝑡𝑡�𝑉𝑉𝑉𝑉𝑟𝑟(𝑔𝑔)�𝑌𝑌𝑡𝑡�

,     𝑘𝑘 =  1,2, . . . , 𝑀𝑀         (5.2) 

where,   Gk  is the number of time series in the  kth cluster. 
For initializing parameters ϕ11

(j), ϕ12
(j), ϕ21

(j)  and   ϕ22
(j) ;  j = 1 ,2, 3,

.  .  .  , p, ordinary least squares  estimates of  the bivariate auto-
regressive process of order p are obtained for each time series 
data in each class and averaged over the number of time series 
in that class. The sample realization of bivariate autoregressive 
process of order  p can be written in the following format: 
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⎣
⎢
⎢
⎢
⎢
⎡
𝑋𝑋𝑡𝑡 ,𝑝𝑝+1 𝑌𝑌𝑡𝑡 ,𝑝𝑝+1
𝑋𝑋𝑡𝑡 ,𝑝𝑝+2 𝑌𝑌𝑡𝑡 ,𝑝𝑝+2
. .
. .
. .
𝑋𝑋𝑡𝑡 ,𝑛𝑛 𝑌𝑌𝑡𝑡 ,𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

=  

⎣
⎢
⎢
⎢
⎢
⎡
𝑋𝑋𝑡𝑡 ,1 𝑌𝑌𝑡𝑡 ,1 𝑋𝑋𝑡𝑡 ,2 𝑌𝑌𝑡𝑡 ,2 . . . 𝑋𝑋𝑡𝑡 ,𝑝𝑝 𝑌𝑌𝑡𝑡 ,𝑝𝑝
𝑋𝑋𝑡𝑡 ,2 𝑌𝑌𝑡𝑡 ,2 𝑋𝑋𝑡𝑡 ,3 𝑌𝑌𝑡𝑡 ,3 . . . 𝑋𝑋𝑡𝑡 ,𝑝𝑝+1 𝑌𝑌𝑡𝑡 ,𝑝𝑝+1
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
𝑋𝑋𝑡𝑡 ,𝑛𝑛−𝑝𝑝 𝑌𝑌𝑡𝑡 ,𝑛𝑛−𝑝𝑝 𝑋𝑋𝑡𝑡 ,𝑛𝑛−(𝑝𝑝−1) 𝑌𝑌𝑡𝑡 ,𝑛𝑛−(𝑝𝑝−1) . . . 𝑋𝑋𝑡𝑡 ,𝑛𝑛−1 𝑌𝑌𝑡𝑡 ,𝑛𝑛−1

.

⎦
⎥
⎥
⎥
⎥
⎤

 

     

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜙𝜙11𝑡𝑡

(1) 𝜙𝜙21𝑡𝑡
(1)

𝜙𝜙12𝑡𝑡
(1) 𝜙𝜙22𝑡𝑡

(1)

𝜙𝜙11𝑡𝑡
(2) 𝜙𝜙21𝑡𝑡

(2)

𝜙𝜙12𝑡𝑡
(2) 𝜙𝜙22𝑡𝑡

(2)

. .

. .

. .
𝜙𝜙11𝑡𝑡

(p) 𝜙𝜙21𝑡𝑡
(𝑝𝑝)

𝜙𝜙12𝑡𝑡
(𝑝𝑝) 𝜙𝜙22𝑡𝑡

(𝑝𝑝)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+   

⎣
⎢
⎢
⎢
⎢
⎡
𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑝𝑝+1 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑝𝑝+1
𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑝𝑝+2 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑝𝑝+2
. .
. .
. .
𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑛𝑛 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎤

 

which can be represented as  
 
Υt  =  ΧtΦt  +  ξ t  
 
where,      
 

Υ𝑡𝑡  =  

⎣
⎢
⎢
⎢
⎢
⎡
𝑋𝑋𝑡𝑡 ,𝑝𝑝+1 𝑌𝑌𝑡𝑡 ,𝑝𝑝+1
𝑋𝑋𝑡𝑡 ,𝑝𝑝+2 𝑌𝑌𝑡𝑡 ,𝑝𝑝+2
. .
. .
. .
𝑋𝑋𝑡𝑡 ,𝑛𝑛 𝑌𝑌𝑡𝑡 ,𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎤

,   Χ𝑡𝑡 = 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝑋𝑋𝑡𝑡 ,1 𝑌𝑌𝑡𝑡 ,1 𝑋𝑋𝑡𝑡 ,2 𝑌𝑌𝑡𝑡 ,2 . . . 𝑋𝑋𝑡𝑡 ,𝑝𝑝 𝑌𝑌𝑡𝑡 ,𝑝𝑝
𝑋𝑋𝑡𝑡 ,2 𝑌𝑌𝑡𝑡 ,2 𝑋𝑋𝑡𝑡 ,3 𝑌𝑌𝑡𝑡 ,3 . . . 𝑋𝑋𝑡𝑡 ,𝑝𝑝+1 𝑌𝑌𝑡𝑡 ,𝑝𝑝+1
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
𝑋𝑋𝑡𝑡 ,𝑛𝑛−𝑝𝑝 𝑌𝑌𝑡𝑡 ,𝑛𝑛−𝑝𝑝 𝑋𝑋𝑡𝑡 ,𝑛𝑛−(𝑝𝑝−1) 𝑌𝑌𝑡𝑡 ,𝑛𝑛−(𝑝𝑝−1) . . . 𝑋𝑋𝑡𝑡 ,𝑛𝑛−1 𝑌𝑌𝑡𝑡 ,𝑛𝑛−1

.

⎦
⎥
⎥
⎥
⎥
⎤

 

Φ𝑡𝑡  =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜙𝜙11𝑡𝑡

(1) 𝜙𝜙21𝑡𝑡
(1)

𝜙𝜙12𝑡𝑡
(1) 𝜙𝜙22𝑡𝑡

(1)

𝜙𝜙11𝑡𝑡
(2) 𝜙𝜙21𝑡𝑡

(2)

𝜙𝜙12𝑡𝑡
(2) 𝜙𝜙22𝑡𝑡

(2)

. .

. .

. .
𝜙𝜙11𝑡𝑡

(𝑝𝑝) 𝜙𝜙21𝑡𝑡
(𝑝𝑝)

𝜙𝜙12𝑡𝑡
(𝑝𝑝) 𝜙𝜙22𝑡𝑡

(𝑝𝑝)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    and   𝜉𝜉 𝑡𝑡  =  

⎣
⎢
⎢
⎢
⎢
⎡
𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑝𝑝+1 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑝𝑝+1
𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑝𝑝+2 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑝𝑝+2
. .
. .
. .
𝑒𝑒𝑋𝑋𝑡𝑡 ,𝑛𝑛 𝑒𝑒𝑌𝑌𝑡𝑡 ,𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎤

 

Then the ordinary least square estimate of Φt  is  
 
Φ� t =  (Χt

TΧt)−1Χt
TΥt       for   t =  1, 2, .  .  .  , N 

 

6. MODEL BASED CLUSTERING ALGORITHM 
Here, the clustering algorithm is presented for identi-

fying the new time series data with one of the available clus-
ters. The steps involved in this algorithm are as follows: 
Step 1:  Draw scatter surface diagram for training data set in  
               order to obtain the initial number of clusters for using  
             in  the K-means algorithm. 
Step 2:  Through K means algorithm obtain the refined num 
             ber of classes and elements in each cluster. 
Step 3:  Obtain the initial estimates of model parameters using  
              bivariate AR(p) process and the least square method     
            of estimation given in section  5. 
 Step 4: Obtain the refined estimates of model parameters    
             using updated equations of EM  algorithm for  
             bivariate AR(p) process given in section 4. 
Step 5: For new Time series Bivariate dataset, compute the  
             conditional Liklihood with model parameters of 𝑖𝑖𝑡𝑡ℎ   
              class derived from step 4 over 1 to k and assign it to a  
              class for which the component conditional Likelihood  
            is maximum. 
7. EXPERIMENTAL RESULTS AND PERFOANCE  
    EVALUATION 

In this section, the utility of developed algorithm for 
clustering regions is demonstrated. After discussion with the 
people in Cyclone Warning Centre at Visakhapatnam, it is 
understood that two variables Temperature and Humidity 
levels are most important for taking control measures of 
weather forecast of a region. To understand the dynamics of 
weather in the regions, it is required to segment the total area 

into various regions based on the vector �
Temperature
Humidity � . The 

number of regions in an area is not known as a priori and re-
quires clustering methods to identify a sample time series 
with the region. Hence a study is carried out by collecting the 

bivariate variable   �
Temperature
Humidity �  over a period with a sam-

ple collected over 100 locations covering the whole area.  
Using the K-means algorithm, the number of regions 

is determined. For implementing K-means algorithm, the ini-
tial number of regions is required. Using training data the bi-
variate time series are plotted in scatter responses through a 3-
dimensional graph shown in figure 7.1. 

Figure 7.1 

 

Scatter plot for Temperature and Humidity against time 
From figure 7.1, it is observed that the time series are 
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stationary after obtaining deviation from mean values and it is 
also observed that there are three surfaces which represent 
three regions. Taking the initial value of number of clusters as 
three, the K-means algorithm is implemented on the training 
dataset of 100 time series  and found that the number of re-
gions in that area also represent three levels. The whole train-
ing data is classified into three segments representing three 
regions 

For developing BAR(2)  model for each region, one 
can obtain the updated equations of the model parameters for 
EM algorithm. Taking p =  2 in equations (4.11) to (4.20) one 
can obtain the updated equations of the model parameters of 
σeX k

2 ,σeY k
2 , ϕ11k

(1) , ϕ12k
(1) ,ϕ21k

(1) ,ϕ22k
(1) , ϕ11k

(2) ,ϕ12k
(2) ,ϕ21k

(2) ,ϕ22k
(2)  and ρk  

respectively as  

∑
𝑡𝑡=1

𝑁𝑁
  𝑃𝑃��𝜔𝜔𝑘𝑘 | 𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� �(𝑛𝑛 − 2) � 

−   
1

(1 − 𝜌𝜌𝑘𝑘2)  ∑
𝑢𝑢=3

𝑛𝑛
�
𝑋𝑋𝑡𝑡 ,𝑢𝑢

2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 + �

�𝜙𝜙11𝑘𝑘
(1) �

2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(1) 𝜙𝜙21𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−1

2 � 

+�
�𝜙𝜙11𝑘𝑘

(2) �
2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(2) 𝜙𝜙21𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−2

2  

+�
�𝜙𝜙12𝑘𝑘

(1) �
2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(1) 𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑌𝑌𝑡𝑡 ,𝑢𝑢−1

2  

+�
�𝜙𝜙12𝑘𝑘

(2) �
2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 −

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(2) 𝜙𝜙22𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2

2 − �
2𝜙𝜙11𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 −

𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘
(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−1𝑋𝑋𝑡𝑡 ,𝑢𝑢  

−�
2𝜙𝜙11𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−2𝑋𝑋𝑡𝑡 ,𝑢𝑢  

+�
2𝜙𝜙11𝑘𝑘

(1) 𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙11𝑘𝑘
(1) 𝜙𝜙21𝑘𝑘

(2) + 𝜙𝜙11𝑘𝑘
(2) 𝜙𝜙21𝑘𝑘

(1) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 

−�
2𝜙𝜙12𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2  −

𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘
(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 − �

2𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2  −

𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

+�
2𝜙𝜙11𝑘𝑘

(1) 𝜙𝜙12𝑘𝑘
(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙11𝑘𝑘
(1) 𝜙𝜙22𝑘𝑘

(1) + 𝜙𝜙12𝑘𝑘
(1) 𝜙𝜙21𝑘𝑘

(1) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 

+�
2𝜙𝜙11𝑘𝑘

(1) 𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 −   

𝜌𝜌𝑘𝑘�𝜙𝜙11𝑘𝑘
(1) 𝜙𝜙22𝑘𝑘

(2) + 𝜙𝜙12𝑘𝑘
(2) 𝜙𝜙21𝑘𝑘

(1) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

+�
2𝜙𝜙12𝑘𝑘

(1) 𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙12𝑘𝑘
(1) 𝜙𝜙21𝑘𝑘

(2) + 𝜙𝜙11𝑘𝑘
(2) 𝜙𝜙22𝑘𝑘

(1) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 

+�
2𝜙𝜙11𝑘𝑘

(2) 𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙11𝑘𝑘
(2) 𝜙𝜙22𝑘𝑘

(2) + 𝜙𝜙12𝑘𝑘
(2) 𝜙𝜙21𝑘𝑘

(2) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

+�
2𝜙𝜙12𝑘𝑘

(1) 𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙12𝑘𝑘
(1) 𝜙𝜙22𝑘𝑘

(2) + 𝜙𝜙12𝑘𝑘
(2) 𝜙𝜙22𝑘𝑘

(1) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

−  𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢 −  𝜙𝜙11𝑘𝑘

(1) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 −  𝜙𝜙11𝑘𝑘
(2) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 −  𝜙𝜙12𝑘𝑘

(1) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1     �  

 ��− 𝜙𝜙12𝑘𝑘
(2) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2�𝑌𝑌𝑡𝑡 ,𝑢𝑢�                                                                        (7.1) 

∑
𝑡𝑡=1

𝑁𝑁
  𝑃𝑃��𝜔𝜔𝑘𝑘 | 𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� �(𝑛𝑛 − 2) � 

−  
1

(1 − 𝜌𝜌𝑘𝑘2)  ∑
𝑢𝑢=3

𝑛𝑛
�
𝑌𝑌𝑡𝑡 ,𝑢𝑢

2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 + �

�𝜙𝜙21𝑘𝑘
(1) �

2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2  −  

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(1) 𝜙𝜙21𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−1

2 � 

+�
�𝜙𝜙21𝑘𝑘

(2) �
2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(2) 𝜙𝜙21𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−2

2  

+�
�𝜙𝜙22𝑘𝑘

(1) �
2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(1) 𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1

2  

+�
�𝜙𝜙22𝑘𝑘

(2) �
2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(2) 𝜙𝜙22𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2

2  

−�
2𝜙𝜙21𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−1𝑌𝑌𝑡𝑡 ,𝑢𝑢  

−�
2𝜙𝜙21𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�  𝑋𝑋𝑡𝑡 ,𝑢𝑢−2𝑌𝑌𝑡𝑡 ,𝑢𝑢  

+�
2𝜙𝜙21𝑘𝑘

(1) 𝜙𝜙21𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙11𝑘𝑘
(1) 𝜙𝜙21𝑘𝑘

(2) + 𝜙𝜙11𝑘𝑘
(2) 𝜙𝜙21𝑘𝑘

(1) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 

−�
2𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2  −

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 − �

2𝜙𝜙22𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2  −  

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

+�
2𝜙𝜙21𝑘𝑘

(1) 𝜙𝜙22𝑘𝑘
(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙11𝑘𝑘
(1) 𝜙𝜙22𝑘𝑘

(1) + 𝜙𝜙12𝑘𝑘
(1) 𝜙𝜙21𝑘𝑘

(1) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 

+�
2𝜙𝜙21𝑘𝑘

(1) 𝜙𝜙22𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙11𝑘𝑘
(1) 𝜙𝜙22𝑘𝑘

(2) + 𝜙𝜙12𝑘𝑘
(2) 𝜙𝜙21𝑘𝑘

(1) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

+�
2𝜙𝜙21𝑘𝑘

(2) 𝜙𝜙22𝑘𝑘
(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙11𝑘𝑘
(2) 𝜙𝜙22𝑘𝑘

(1) + 𝜙𝜙12𝑘𝑘
(1) 𝜙𝜙21𝑘𝑘

(2) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 

+�
2𝜙𝜙21𝑘𝑘

(2) 𝜙𝜙22𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙11𝑘𝑘
(2) 𝜙𝜙22𝑘𝑘

(2) + 𝜙𝜙12𝑘𝑘
(2) 𝜙𝜙21𝑘𝑘

(2) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

+�
2𝜙𝜙22𝑘𝑘

(1) 𝜙𝜙22𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2   −   

𝜌𝜌𝑘𝑘�𝜙𝜙12𝑘𝑘
(1) 𝜙𝜙22𝑘𝑘

(2) + 𝜙𝜙12𝑘𝑘
(2) 𝜙𝜙22𝑘𝑘

(1) �
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

�Y𝑡𝑡 ,𝑢𝑢−1𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

−  
𝜌𝜌𝑘𝑘

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘 𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑌𝑌𝑡𝑡 ,𝑢𝑢 −  𝜙𝜙21𝑘𝑘

(1) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 −  𝜙𝜙21𝑘𝑘
(2) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 −  𝜙𝜙22𝑘𝑘

(1) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1
� 

�−  �
�𝜙𝜙22𝑘𝑘

(2) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2�𝑋𝑋𝑡𝑡 ,𝑢𝑢��                                                                      (7.2)
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∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=3

𝑛𝑛
��
𝑋𝑋𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝑌𝑌𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 

−�𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 �
𝜙𝜙11𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� + 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 �

𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 

�− ��
𝜙𝜙12𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + �

𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
 −

𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1�  =  0 

                  (7.3) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=3

𝑛𝑛
 ��

𝑋𝑋𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−

𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

𝑌𝑌𝑡𝑡 ,𝑢𝑢�  𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 � 

−  �𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 �
𝜙𝜙11𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� + 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 �

𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 

− � ��
𝜙𝜙12𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−  
𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + �

𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1�  = 0 

                  (7.4) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=3

𝑛𝑛
 ��

𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘

𝑋𝑋𝑡𝑡 ,𝑢𝑢 −
𝑌𝑌𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 

−  �𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 �
𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙21𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� + 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 �

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙21𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 

�−  ��
𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + �

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙22𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1�  =  0 

                  (7.5) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=3

𝑛𝑛
 ��

𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘

𝑋𝑋𝑡𝑡 ,𝑢𝑢 −
𝑌𝑌𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 

−  �𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 �
𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙21𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� + 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 �

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙21𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 

�−  ��
𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−  
𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + �

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙22𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1� =  0 

                  (7.6) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=3

𝑛𝑛
 ��

𝑋𝑋𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−

𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

𝑌𝑌𝑡𝑡 ,𝑢𝑢�𝑋𝑋𝑡𝑡 ,𝑢𝑢−2
� 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=3

𝑛𝑛
 ��

𝑋𝑋𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−

𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

𝑌𝑌𝑡𝑡 ,𝑢𝑢�𝑋𝑋𝑡𝑡 ,𝑢𝑢−2
� 

�− ��
𝜙𝜙12𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + �

𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑌𝑌𝑡𝑡 ,𝑢𝑢−2� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2�  =  0 

                  (7.7) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=3

𝑛𝑛
 ��

𝑋𝑋𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘

𝑌𝑌𝑡𝑡 ,𝑢𝑢�� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

 

−  �𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 �
𝜙𝜙11𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘
(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� + 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 �

𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜌𝜌𝑘𝑘𝜙𝜙21𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2 

�−  ��
𝜙𝜙12𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + �

𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜌𝜌𝑘𝑘𝜙𝜙22𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−2�  =  0 

                  (7.8) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=3

𝑛𝑛
 ��

𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘

𝑋𝑋𝑡𝑡 ,𝑢𝑢 −   
𝑌𝑌𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑋𝑋𝑡𝑡 ,𝑢𝑢−2

� 

−  �𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 �
𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜙𝜙21𝑘𝑘
(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� + 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 �

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
  −   

𝜙𝜙21𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 

�− ��
𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + �

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−  
𝜙𝜙22𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑌𝑌𝑡𝑡 ,𝑢𝑢−2� 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2�  =  0 

                  (7.9) 

∑
𝑡𝑡=1

𝑁𝑁
𝑃𝑃��𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟)� ∑

𝑢𝑢=3

𝑛𝑛
 ��

𝜌𝜌𝑘𝑘
𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘

𝑋𝑋𝑡𝑡 ,𝑢𝑢 −
𝑌𝑌𝑡𝑡 ,𝑢𝑢

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1

� 

−  �𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 �
𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙21𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� + 𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 �

𝜌𝜌𝑘𝑘𝜙𝜙11𝑘𝑘
(2)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙21𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 

�− ��
𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
−
𝜙𝜙22𝑘𝑘

(1)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + �

𝜌𝜌𝑘𝑘𝜙𝜙12𝑘𝑘
(2)

𝜎𝜎𝑒𝑒X𝑘𝑘

−  
𝜙𝜙22𝑘𝑘

(2)

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
�𝑌𝑌𝑡𝑡 ,𝑢𝑢−2� 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1�  =  0 

                (7.10) 

∑
𝑡𝑡=1

𝑁𝑁
 𝑃𝑃(𝜔𝜔𝑘𝑘 |𝑍𝑍𝑡𝑡 ,Θ(𝑟𝑟) �) 

�(𝑛𝑛 − 2)  −
1

1 − 𝜌𝜌𝑘𝑘2
∑
𝑢𝑢=3

𝑛𝑛
�
𝑋𝑋𝑡𝑡 ,𝑢𝑢

2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 +

𝑌𝑌𝑡𝑡 ,𝑢𝑢
2

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
2 + �

�𝜙𝜙11𝑘𝑘
(1) �

2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 +

�𝜙𝜙21𝑘𝑘
(1) �

2

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
2 ��� 

𝑋𝑋𝑡𝑡 ,𝑢𝑢−1
2 + �

�𝜙𝜙11𝑘𝑘
(2) �
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2

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
2 �𝑋𝑋𝑡𝑡 ,𝑢𝑢−2

2  

+�
�𝜙𝜙12𝑘𝑘

(1) �
2

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 +
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(1) �

2

𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
2 �𝑌𝑌𝑡𝑡 ,𝑢𝑢−1
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�𝜙𝜙12𝑘𝑘
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𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 +

�𝜙𝜙22𝑘𝑘
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𝜎𝜎𝑒𝑒𝑌𝑌𝑘𝑘
2 �𝑌𝑌𝑡𝑡 ,𝑢𝑢−2

2  
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𝜙𝜙 11𝑘𝑘

(1) 𝑋𝑋𝑡𝑡,𝑢𝑢−1

𝜎𝜎𝑒𝑒𝑋𝑋𝑘𝑘
2 +
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2 +
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(1) � 𝜙𝜙21𝑘𝑘
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(1) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + 𝜙𝜙22𝑘𝑘
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��+𝜙𝜙12𝑘𝑘
(2) � 𝜙𝜙21𝑘𝑘

(1) 𝑋𝑋𝑡𝑡 ,𝑢𝑢−1 + 𝜙𝜙21𝑘𝑘
(2)  𝑋𝑋𝑡𝑡 ,𝑢𝑢−2 + 𝜙𝜙22𝑘𝑘

(1) 𝑌𝑌𝑡𝑡 ,𝑢𝑢−1 + 𝜙𝜙22𝑘𝑘
(2)  𝑌𝑌𝑡𝑡 ,𝑢𝑢−2�𝑌𝑌𝑡𝑡 ,𝑢𝑢−2�� 

                             = 0                       (7.11) 

Using the initialization of parameters discussed in 
section 5, the initial estimates of parameters P(ωk),σeX k

2 ,σeY k
2 , 

ϕ11k
(j) ,ϕ12k

(j) ,ϕ21k
(j) ,ϕ22k

(j)    and   ρk  are obtained for three regions. 
The computed initial estimates of the model parameters are 
presented in Table 7.1. 

Table 7.1 
Initial Estimates of the Model Parameters 

Parameter Cluster 1  
(Region I ) 

Cluster 2  
( Region II) 

Cluster 3  
(Region III) 

P(ωk) 0.3333 0.3333 0.3333 
σeX

2  13.5424 10.8860 13.6331 
σeY

2  15.8794 20.9672 9.3483 
ρ 0.1726 0.1826 0.4143 

Φ(1)
11 -0.5576 -0.1566 0.2256 

Φ(1)
12 -0.0320 -0.0075 -0.544 

Φ(1)
21  -0.1198 0.0089 0.1110 

Φ(1)
22  -0.2174 0.0329 -0.0054 

Φ(2)
11 0.3700 0.3327 0.0266 

Φ(2)
12 -0.1738 0.2782 -0.5018 

Φ(2)
21  0.3572 0.0522 0.0382 

Φ(2)
22  0.2559 0.075 0.3254 

 
Using the initial estimates of the parameters and EM algo-
rithm, the refined estimates of parameters for each class are 
obtained and presented in Table 7.2. 

Table 7.2 
Final Estimates of the Model Parameters 

Parameter Cluster 1  
(Region I) 

Cluster 1 
 (Region II ) 

Cluster 1  
(Region III) 

P(ωk) 0.342 0.412 0.246 
σeX

2  12.243 9.584 14.6996 
σeY

2  8.9341 22.467 10.040 
ρ -0.156 -0.05 0.024 

Φ(1)
11 -0.3891 0.036 -0.4053 

Φ(1)
12 0.0493 0.016 0.0531 

Φ(1)
21  -0.0294 0.142 -0.0295 

Φ(1)
22  -0.0925 0.148 -0.0925 

Φ(2)
11 -0.2965 -0.0009 -0.321 

Φ(2)
12 0.4321 0.009 0.4284 

Φ(2)
21  -0.1815 -0.140 -0.1815 

Φ(2)
22  0.1395 0.019 0.1395 

With these final estimates, the models characterizing the three 
groups of time series is estimated as 
 
Region I 

    �Xt
Yt
� = �−0.3891    0.0493 −0.2965 0.4321

−0.0294 −0.0925 −0.1815 0.1395�  �

Xt−1
Yt−1
Xt−2
Yt−2

� +   �
eXt
eYt

� 

Region II 

    �Xt
Yt
�  = �0.036 0.016 −0.0009 0.009

0.142 0.148 −0.0140 0.019�  �

Xt−1
Yt−1
Xt−2
Yt−2

�    +    �
eXt
eYt

� 

Region III 

       �Xt
Yt
�  = �−0.4053     0.0531 −0.321 0.4284

−0.0295 −0.0925 −0.1815 0.1395�  �

Xt−1
Yt−1
Xt−2
Yt−2

�    +    �
eXt
eYt

� 

 
Here, Xt   is Temperature in a region at time t and  Yt  is Humid-
ity level at time  t.  

Therefore the model that characterizes the whole data 
set is a three component mixture of bivariate autoregressive 
process of order 2 (BAR(2)) with component weights as 
P(ω1)= 0.342, P(ω2)= 0.412 and  P(ω3) = 0.246  respectively for 
regions I, II and III. 
 For evaluating the performance of the proposed algo-
rithm, true positive rate (TPR), false positive rater (FPR), false 
discovery rate (FDR) and F- measure are used. For the pro-
posed supervised learning algorithm with bivariate autore-
gressive process of order 2, the performance measures for each 
class are computed and presented in Table 7.3. 

Table 7.3 
Performance Measures of the Bivariate  

AR(2)Classifier 
 True 

Positive 
Rate 
(TPR) 

False 
Positive 
Rate 
(FPR) 

False Dis-
covery 
Rate(FDR) 

F Measure 

Cluster 1 0.9667 0.0143 0.0333 0.9667 
Cluster 2 0.9800 0.0400 0.0392 0.9703 
Cluster 3 0.9500 0.0250 0.0952 0.9268 

To compare the efficiency of the developed bivariate 
AR(2) classifier with the earlier AR(2) classifiers, the true posi-
tive rate (TPR), false positive rate (FPR), false discover rate 
(FDR) and  F-Measure are computed and presented in Table 
7.4 and Table 7.5. 

Table 7.4 
Performance Measures of the Mixture of Univariate 

AR(2) Classifier for Temperature 
 True 

Positive 
Rate 
(TPR) 

False 
Positive 
Rate 
(FPR) 

False Dis-
covery  
rate (FDR) 

F Measure 

Cluster 1 0.9333 0.0571 0.1250 0.9032 
Cluster 2 0.9400 0.0400 0.0408 0.9495 
Cluster 3 0.8947 0.0370 0.1500 0.8718 
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Table 7.5 
Performance Measures of the Mixture of Univariate 

AR(2) Classifier  for Humidity 
 True 

Positive 
Rate 
(TPR) 

False 
Positive 
Rate 
(FPR) 

False Dis-
covery 
rate (FDR) 

F Meaure 

Cluster 1 0.9355 0.0435 0.0968 0.9355 
Cluster 2 0.9592 0.0196 0.0208 0.9691 
Cluster 3 0.9000 0.0250 0.1000 0.9000 

From Table 7.3, Table 7.4 and Table 7.5, it is observed 
that the F value for all categories using the proposed classifier 
are more compared to that of the classifier with univariate 
AR(2) models for both the variables. This indicates that the 
proposed classifier with bivariate AR(2) model is much better 
in classifying time series data than the other two classifiers.  

For evaluating the developed algorithm discussed in 
section 6, the test data consisting of 100 time series is consi-
dered. The developed unsupervised learning algorithm with 
bivariate AR(2)  model identified 29 as region I, 49 as region II 
and 19 region III. To compare the efficiency of developed algo-
rithm with existing univariate unsupervised learning algo-
rithms with AR(2) model for both the variables temperature 
and humidity, the same test data have been considered and 
the misclassification rates are computed. Table 7.6 presents the 
misclassification rates of BAR(2) classifier, AR(2) classifiers for  
Temperature and Humidity separately.  

Table 7.6 
Performance Evaluation of Misclassification Rate 

Classifier with  Misclassification Rate  
BAR(2) 3% 

AR(2) of  temperature 8% 
AR(2) of  humidity 6% 

 
From Table 7.6, it is observed that the misclassifica-

tion rate for bivariate AR(2) classifier is less compared to mis-
classification rate of  AR(2) classifiers of the individual va-
riables Temperature and Humidity. Therefore the developed 
unsupervised learning algorithm with bivariate autoregressive 
process of order 2 outperforms the existing unsupervised 
learning algorithm with autoregressive processes of order 2. 
This algorithm is useful in other domains like medical, biolog-
ical, financial applications etc. 

8. CONCLUSION 
In this paper we investigated the problem of clustering Biva-
riate Time Series data. Traditional static data clustering algo-
rithms are inadequate in clustering time series data. Also the 
algorithms of univariate data sets assumes that there exists no 
correlation among the attributes under consideration. But in 
real world the inherent correlations influence the developed 
models. Considering this, we developed an algorithm for clus-
tering bivariate time series using autoregessive model of order 
(p). The initial clusters are found using K-means algorithm 

and the model parameters are estimated using the EM algo-
rithm. The clustering algorithm is developed by utilizing 
component maximum likelihood.  
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